Demystifying Docker, Kubernetes, Rancher, Portainer, containerization, CI/CD pipeline, microservices, etc.

LINKERD

Couchbase

STACK**HAWK**

Original Topic Request:

- Buzzwords: Docker, Kubernetes, Rancher, Portainer, containerization, CI/CD pipeline, microservices, etc.
 - Why should we care about these things?
 - How are they related to each other (if indeed they are related)?

Douglas Adams 3 rules of technology:

- 1. Anything that is in the world when you're born is normal and ordinary and is just a natural part of the way the world works.
- 2. Anything that's invented between when you're fifteen and thirty-five is new and exciting and revolutionary and you can probably get a career in it.
- 3. Anything invented after you're thirty-five is against the natural order of things.

Why I follow this stuff?

• I'm a UNIX sysadmin & developer

- The cloud native landscape feels natural & fun
 - UNIX philosophy → microservices
 - NIS & NFS → IaC & cloud
 - $-.cfg/.rc \rightarrow .json/.yaml$
 - Makefiles → Makefiles
 - UNIX \rightarrow Linux (& BSD)

Gitops?

devsecops?

Hyper-V Containers

Container1 Web	Container2 Web app	Container: Web app	Web app	Container2 Web app	Container3 Web app
:80	:80	:80	:80	:80	:80
	Docker			Docker	
	kernel		kernel	kernel	kernel
	Hardware			Hyper-V	
:35001	:35002	:35003		Hardware	
			:35001	:35002	:35003

- OS virtualization (=BSD jails)
 - namespace (restrict what container sees using syscalls)
 - cgroups (limits resources container uses)
 - chroot (sets / to the container image) also /proc

- Liz Rice Containers from Scratch:
 - https://www.youtube.com/watch?v=8fi7uSYIOdc

- Use underlying Linux kernel + container runtime
 - Except Hyper-V containers & LCOW which provide a separate kernel for each container

- Easier to develop/evolve microservices
 - UNIX philosophy at work
 - Containers can be combined to create larger services
 - Containers can be scaled (unevenly too)
 - Just makes sense (comp sci is all about containers nowadays)
 - Can be used to add virtualized apps to an existing on-prem system or cloud VM
- Want to learn Docker?
 - Docker Desktop comes with great tutorial (macOS run a Linux VM, Windows uses WSL2)
 - Can also try: https://labs.play-with-docker.com/

- Container runtimes:
 - LXC (LXD is just LXC's REST tool) sysadmins/proxmox
 - Docker = LXC + portable deployment (1 object with multiple containerized apps) + versioning + component/library reuse (index.docker.io)
 - Podman (daemonless Docker)
 - CRI-O (made for Kubernetes)
 - containerd (CRI-compliant)

Kubernetes natively supports CRI-O/containerd (Docker with a shim, but that is deprecated)

 Developers typically use Docker, Podman to create OCIcompliant container images that work on any container

runtime (cloud native)

When it comes to orchestrators

Kubernetes/K8S

- Is <u>NOT</u> hard
- You must put on your dev mindset at first
 - Microservice scaling is a developer-first thing!
 - K8S provides a common API for implementing containers and managing resources (pods, deployments, services, etc.)
- Start small
 - Docker Desktop, minikube, kind, Rancher Desktop (k3s), microk8s
- Sweat equity
- Later, you must put on your sysadmin mindset
 - Networking, security, authentication, storage

- 2011: Jenkins was king
 - Nothing was simple, and devops meant devops
- 2012: ???
- 2013: Docker is the new kid on the block
- 2014: New orchestrators
 - Rancher was the hot new startup (managed Docker containers)
 - Jenkins bought by Cloudbees and put on maintenance?
 - Docker Swarm & K8S

- 2015: Things get formal
 - Docker starts Open Container Initiative (OCI) → containerd (OCI-compliant)
 - Cloud-native Computing Foundation (CNCF)
 - OpenShift gains traction after it adopts Docker & K8S
 - Microsoft announces Docker support in upcoming Server 2016/10 builds
- 2016: K8S ~ IBM PC of the cloud world

- 2017: K8S Gold rush
 - People start making management & reporting tools (e.g. Portainer)
 - The big PaaS providers got in on it (hyperscalers)
 - Docker gets much more attention
 - Big push towards promoting container/microservicefocused development (start of evangelism)

- 2018: Everyone and their mother pivots to support K8S (Jenkins X, Rancher)
 - Shift to the other areas of cloud native landscape (security, auth, storage, DBs, etc.)
 - Docker gets freakin' huge (and stable)
 - Dev evangelism supreme (Kelsey Hightower)
 - Role separation: SRE vs devops

- 2019: pick your area(s)
 - Make K8S easier? Manage K8S clusters?
 - Do K8S differently? Rancher K3S (edge)
 - Security must be worth \$\$ (saturated quickly)
 - GitHub ecosystem started to mature (including workflow)
 - Tooling is really really good (developer-driven)
 - Docker monetization? Docker-EE sold to Mirantis.

• 2020:

- Developers know what they're doing.
- SREs make \$150k US (we need to figure out a product that will reduce the # of them needed)
- Gold rush: Make K8S cheaper to maintain
- SuSE buys Rancher (to keep up with the Red Hats)

2021:

- This infrastructure stuff is never gonna be easy. SREs are necessary. We've got to find our niche (pick something small that others aren't doing and run with it).
- Umm..... What's your workflow like? Tell us and we'll send you a free mug.
- Docker Desktop isn't free for big companies

How do I keep up with this stuff?

- Attend as many online events/presentations as you can
 - SuSEcon
 - Red Hat Summit
 - CloudNativeCon
 - AllDayDevops
 - and many more...
- HackerNews