

Managing Linux Servers via CSSH
Jeff Smith
aka CrankyOldBugger
crankyoldbugger@gmail.com

Usage
● manage multiple SSH sessions at the same time
● this tool is intended for managing multiple systems where the

same configuration or commands can be run concurrently
● handy for cluster management as well
● works on RedHat Enterprise, Redhat Fedora, CentOS, Debian

and Ubuntu
● “should” work on any POSIX compliant UNIX style OS, i.e.

cygwin

Installation
● Ubuntu/Debian/PopOS

sudo apt-get install -y clusterssh

● Fedora/RHEL/Centos
sudo yum (dnf) install -y clusterssh

GitHub: https://github.com/duncs/clusterssh.git

Caveats

Like many UNIX tools, ClusterSSH has the potential to go horribly awry if you aren’t very
careful with its use.

It would take 100 men 100 years to screw things up the way CSSH can in one millisecond...

seriously...

I mean it...

trust me on this...

Super Fancy TipSuper Fancy Tip: Remember to try to use global commands such as ‘sed’ instead
of just depending on cursor movements, as the file you’re editing might not be the same
across all clients.

Global Configuration Files

There are three global configuration files:

/etc/clusters
– Contains a list of cluster names and the hosts mapped to the specified cluster.

/etc/tags
– Reversed logic to /etc/clusters. This allows you to specify one host as a member of multiple tags.

/etc/csshrc
– This file contains default configuration overrides.

User Specific Configuration Files

There are also three user specific files that can overwrite
the global files.

$HOME/.clusterssh/clusters
– User specific version of /etc/clusters

$HOME/.clusterssh/tags
– User specific version of /etc/tags

$HOME/.clusterssh/config
– User specific version of /etc/csshrc

The Config Files

Global Config:

/etc/csshrc

Personal Config:

$HOME/.clusterssh/config

Default options are overwritten first by the global file, and
then by the user file.

An Example Config File
/etc/csshrc
screen_reserve_top = 25 Number of pixels from the screen's side to reserve when calculating

screen geometry for tiling. Setting this to something like 50 will help
keep cssh from positioning windows over your window manager's menu
bar if it draws one at that side of the screen.

screen_reserve_bottom = 25

screen_reserve_left = 20

screen_reserve_right = 20

terminal_font = 6x12 Font to use in the terminal windows. Use standard X font notation.
You can find available fonts in /usr/share/fonts/X11/misc/font.alias

terminal_reserve_top = 80 Number of pixels from the terminal's side to reserve when calculating
screen geometry for tiling. Setting these will help keep cssh from
positioning windows over your scroll and title bars or otherwise
overlapping the windows too much.

terminal_reserve_bottom = 25

terminal_reserve_left = 5

terminal_reserve_right = 5

terminal_size = 100x90 Initial size of terminals to use. NOTE: the number of lines (24) will be
decreased when resizing terminals for tiling, not the number of
characters (80).

window_tiling = yes Perform window tiling (set to 0 to disable)

Running cssh ad-hoc

You can run cssh as-is (without a pre-made client list)
using this one-line command:

cssh -l username server_ip_address_1 server_ip_address_2
server_ip_address_3

example:

cssh -l root fedora01 fedora02 centos01

Running with a “clusters” file

You can run cssh using a global or local clusters file with:

cssh -l username clustername (no username in file)

cssh clustername (username specified in file)

example:

cssh -l root clusterubuntu

Formats:

cssh <clustername> -l username <server>[:port] <server>[:port] [...]

A Sample /etc/clusters

clusters = my ubuntu systems
clusterubuntu ubuntu01 ubuntu02 ubuntu03

clusters = my fedora systems
clusterfedora fedora01 fedora02 centos01

clusters = all of my systems
clusterall ubuntu01 ubuntu02 ubuntu03 fedora01 fedora02 centos01

Or:

clusters = my ubuntu systems with user name
clusterubuntu jeff@ubuntu01 jeff@ubuntu02 jeff@ubuntu03

Running with a “tags” file

You can run cssh using a global or local tags file with:

cssh -l username tagname

A Sample $HOME/.clusterssh/tags

#KWLUG test

ubuntu01 ubuntu kwlug

ubuntu02 ubuntu kwlug

ubuntu03 ubuntu kwlug

fedora01 fedora kwlug

fedora02 fedora kwlug

centos01 fedora centos kwlug

Nifty Parameters
--action '<command>', -a '<command>'

Run the command in each session, e.g. "-a 'vi /etc/hosts'" to drop straight into a vi session.

--fillscreen
Resize terminal windows to fill the whole available screen

--port <port>, -p <port>
Specify an alternate port for connections.

--tag-file '<filename>', -r '<filename>'
Use supplied file as additional tag file (see also "FILES")

--unique-servers, -u
Toggle connecting to each host only once when a hostname has been specified multiple times.

--username '<username>', -l '<username>'
Specify the default username to use for connections (if different from the currently logged in user). NOTE: will be
overridden by <user>@<host>.

See https://github.com/duncs/clusterssh for more.
There’s more parameters at https://linux.die.net/man/1/cssh as well

https://github.com/duncs/clusterssh
https://linux.die.net/man/1/cssh

PSSH (parallel ssh)
Similar to cssh, but generally only does one command per session.

Parameters:

-h host_file
--hosts host_file
 Read hosts from the given host_file. Lines in the host file are of the form [user@]host[:port] and can include blank lines
and comments (lines beginning with "#"). If multiple host files are given (the -h option is used more than once), then pssh
behaves as though these files were concatenated together. If a host is specified multiple times, then pssh will connect the
given number of times.

-l user
--user user
 Use the given username as the default for any host entries that don't specifically specify a user.

Examples:
Connect to host1 and host2, and print "hello, world" from each:
 pssh -i -H "host1 host2" echo "hello, world"

Print "hello, world" from each host specified in the file hosts.txt:
 pssh -i -h hosts.txt echo "hello, world"

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

