
GDB Intro

Sergio Durigan Junior
sergiodj@{sergiodj.net,redhat.com,debian.org}



License

I License: Creative Commons Attribution 4.0 International
License (CC-BY-4.0)

I https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


Introduction

I GDB: GNU project's Debugger

(it is not a database. . . ).
Supports several programming languages.

I Started around 1986 by Richard Stallman (after GNU Emacs,
but likely before GCC).



Introduction

I GDB: GNU project's Debugger (it is not a database. . . ).
Supports several programming languages.

I Started around 1986 by Richard Stallman (after GNU Emacs,
but likely before GCC).



Compiling your program for GDB

I Your program needs to contain debug information (also called
DWARF) for GDB to consume.

I The GCC �ag to include debug information is -g. We also use
-g3, which includes information about macros (#define).

I It's common to disable optimizations when building the binary,
by using the �ag -O0 (it's dash-oh-zero).
I # gcc -O0 -g program.c -o program, or
I # CFLAGS='-O0 -g' ./configure && make



Compiling your program for GDB

I Your program needs to contain debug information (also called
DWARF) for GDB to consume.

I The GCC �ag to include debug information is -g. We also use
-g3, which includes information about macros (#define).

I It's common to disable optimizations when building the binary,
by using the �ag -O0 (it's dash-oh-zero).
I # gcc -O0 -g program.c -o program, or
I # CFLAGS='-O0 -g' ./configure && make



Compiling your program for GDB

I Your program needs to contain debug information (also called
DWARF) for GDB to consume.

I The GCC �ag to include debug information is -g. We also use
-g3, which includes information about macros (#define).

I It's common to disable optimizations when building the binary,
by using the �ag -O0 (it's dash-oh-zero).

I # gcc -O0 -g program.c -o program, or
I # CFLAGS='-O0 -g' ./configure && make



Compiling your program for GDB

I Your program needs to contain debug information (also called
DWARF) for GDB to consume.

I The GCC �ag to include debug information is -g. We also use
-g3, which includes information about macros (#define).

I It's common to disable optimizations when building the binary,
by using the �ag -O0 (it's dash-oh-zero).
I # gcc -O0 -g program.c -o program, or
I # CFLAGS='-O0 -g' ./configure && make



Running your program using GDB

I In GDB's parlance, the program being debugged is called the
inferior.

I Some ways to start the debugger:
I # gdb ./program

I # gdb --args ./program arg1 arg2

I # gdb

(gdb) file ./program

(gdb) run arg1 arg2

Or you can also use start (run and stop at main).



Running your program using GDB

I In GDB's parlance, the program being debugged is called the
inferior.

I Some ways to start the debugger:

I # gdb ./program

I # gdb --args ./program arg1 arg2

I # gdb

(gdb) file ./program

(gdb) run arg1 arg2

Or you can also use start (run and stop at main).



Running your program using GDB

I In GDB's parlance, the program being debugged is called the
inferior.

I Some ways to start the debugger:
I # gdb ./program

I # gdb --args ./program arg1 arg2

I # gdb

(gdb) file ./program

(gdb) run arg1 arg2

Or you can also use start (run and stop at main).



Running your program using GDB

I In GDB's parlance, the program being debugged is called the
inferior.

I Some ways to start the debugger:
I # gdb ./program

I # gdb --args ./program arg1 arg2

I # gdb

(gdb) file ./program

(gdb) run arg1 arg2

Or you can also use start (run and stop at main).



Running your program using GDB

I In GDB's parlance, the program being debugged is called the
inferior.

I Some ways to start the debugger:
I # gdb ./program

I # gdb --args ./program arg1 arg2

I # gdb

(gdb) file ./program

(gdb) run arg1 arg2

Or you can also use start (run and stop at main).



{Break,Catch,Watch}points

I A breakpoint is related to source code (location, function). A
watchpoint is related to data (read/write of a variable). A
catchpoint is related to an event (enter/exit a syscall, fork,
receive a signal).

I Breakpoints (code)
I break
I tbreak (temporary)

I Watchpoints (data)
I watch (write), rwatch (read), awatch (access)
I Conditional watchpoints are supported.

I Catchpoints (events)
I catch fork
I catch syscall



{Break,Catch,Watch}points

I A breakpoint is related to source code (location, function). A
watchpoint is related to data (read/write of a variable). A
catchpoint is related to an event (enter/exit a syscall, fork,
receive a signal).

I Breakpoints (code)
I break
I tbreak (temporary)

I Watchpoints (data)
I watch (write), rwatch (read), awatch (access)
I Conditional watchpoints are supported.

I Catchpoints (events)
I catch fork
I catch syscall



{Break,Catch,Watch}points

I A breakpoint is related to source code (location, function). A
watchpoint is related to data (read/write of a variable). A
catchpoint is related to an event (enter/exit a syscall, fork,
receive a signal).

I Breakpoints (code)
I break
I tbreak (temporary)

I Watchpoints (data)
I watch (write), rwatch (read), awatch (access)
I Conditional watchpoints are supported.

I Catchpoints (events)
I catch fork
I catch syscall



{Break,Catch,Watch}points

I A breakpoint is related to source code (location, function). A
watchpoint is related to data (read/write of a variable). A
catchpoint is related to an event (enter/exit a syscall, fork,
receive a signal).

I Breakpoints (code)
I break
I tbreak (temporary)

I Watchpoints (data)
I watch (write), rwatch (read), awatch (access)
I Conditional watchpoints are supported.

I Catchpoints (events)
I catch fork
I catch syscall



Resuming the execution

I After GDB has stopped the inferior (because a *point has
been hit, for example), you will probably want to resume its
execution.

I You may just want to continue the program:
I continue

I Or maybe go to the next statement/instruction:
I next (statement), or nexti (instruction)

I Or step into a function:
I step (statement), or stepi (instruction)

I Or �nish executing the current function, but stop at the end:
I finish



Resuming the execution

I After GDB has stopped the inferior (because a *point has
been hit, for example), you will probably want to resume its
execution.

I You may just want to continue the program:
I continue

I Or maybe go to the next statement/instruction:
I next (statement), or nexti (instruction)

I Or step into a function:
I step (statement), or stepi (instruction)

I Or �nish executing the current function, but stop at the end:
I finish



Resuming the execution

I After GDB has stopped the inferior (because a *point has
been hit, for example), you will probably want to resume its
execution.

I You may just want to continue the program:
I continue

I Or maybe go to the next statement/instruction:
I next (statement), or nexti (instruction)

I Or step into a function:
I step (statement), or stepi (instruction)

I Or �nish executing the current function, but stop at the end:
I finish



Resuming the execution

I After GDB has stopped the inferior (because a *point has
been hit, for example), you will probably want to resume its
execution.

I You may just want to continue the program:
I continue

I Or maybe go to the next statement/instruction:
I next (statement), or nexti (instruction)

I Or step into a function:
I step (statement), or stepi (instruction)

I Or �nish executing the current function, but stop at the end:
I finish



Resuming the execution

I After GDB has stopped the inferior (because a *point has
been hit, for example), you will probably want to resume its
execution.

I You may just want to continue the program:
I continue

I Or maybe go to the next statement/instruction:
I next (statement), or nexti (instruction)

I Or step into a function:
I step (statement), or stepi (instruction)

I Or �nish executing the current function, but stop at the end:
I finish



Examining data

I The inferior has stopped. . . Now what?

I You may want to print the value of some variable:
I print VAR

I Or examine a memory location:
I x ADDRESS

I The type of a variable? Easy:
I whatis VARIABLE

I Hint: you may want to enable pretty-printing:
I set print pretty on



Examining data

I The inferior has stopped. . . Now what?

I You may want to print the value of some variable:
I print VAR

I Or examine a memory location:
I x ADDRESS

I The type of a variable? Easy:
I whatis VARIABLE

I Hint: you may want to enable pretty-printing:
I set print pretty on



Examining data

I The inferior has stopped. . . Now what?

I You may want to print the value of some variable:
I print VAR

I Or examine a memory location:
I x ADDRESS

I The type of a variable? Easy:
I whatis VARIABLE

I Hint: you may want to enable pretty-printing:
I set print pretty on



Examining data

I The inferior has stopped. . . Now what?

I You may want to print the value of some variable:
I print VAR

I Or examine a memory location:
I x ADDRESS

I The type of a variable? Easy:
I whatis VARIABLE

I Hint: you may want to enable pretty-printing:
I set print pretty on



Examining data

I The inferior has stopped. . . Now what?

I You may want to print the value of some variable:
I print VAR

I Or examine a memory location:
I x ADDRESS

I The type of a variable? Easy:
I whatis VARIABLE

I Hint: you may want to enable pretty-printing:
I set print pretty on



Examining the code

I Yes, we have ncurses! The Text Uuser Interface!
I C-x a (that's CTRL x a).

I If you want to list the current region, or if you don't
want/can't to use TUI:
I list

I You can also disassemble code:
I disassemble

I If GDB can't �nd the source code, you can specify its location
using the dir command.



Examining the code

I Yes, we have ncurses! The Text Uuser Interface!
I C-x a (that's CTRL x a).

I If you want to list the current region, or if you don't
want/can't to use TUI:
I list

I You can also disassemble code:
I disassemble

I If GDB can't �nd the source code, you can specify its location
using the dir command.



Examining the code

I Yes, we have ncurses! The Text Uuser Interface!
I C-x a (that's CTRL x a).

I If you want to list the current region, or if you don't
want/can't to use TUI:
I list

I You can also disassemble code:
I disassemble

I If GDB can't �nd the source code, you can specify its location
using the dir command.



Examining the code

I Yes, we have ncurses! The Text Uuser Interface!
I C-x a (that's CTRL x a).

I If you want to list the current region, or if you don't
want/can't to use TUI:
I list

I You can also disassemble code:
I disassemble

I If GDB can't �nd the source code, you can specify its location
using the dir command.



Examining the call stack

I If you want to see the call stack (A.K.A. stack trace) that lead
to the current function:
I bt

I And you can move through it:
I up and down
I You can also go to a speci�c frame: frame NUMBER



Examining the call stack

I If you want to see the call stack (A.K.A. stack trace) that lead
to the current function:
I bt

I And you can move through it:
I up and down
I You can also go to a speci�c frame: frame NUMBER



Core�les

I Core�les are frozen images of the inferior. You can inspect
everything that was happening when the process was running
(but you can't resurrect it).

I You can generate them outside GDB, when a program crashes.
Make sure you:
I ulimit -c unlimited
I Check if systemd is handling them

(/proc/sys/kernel/core_pattern).

I You can also generate them inside GDB, at any moment:
I generate-core-file

I You can open a core�le using GDB:
I # gdb program -c corefile.PID



Core�les

I Core�les are frozen images of the inferior. You can inspect
everything that was happening when the process was running
(but you can't resurrect it).

I You can generate them outside GDB, when a program crashes.
Make sure you:
I ulimit -c unlimited
I Check if systemd is handling them

(/proc/sys/kernel/core_pattern).

I You can also generate them inside GDB, at any moment:
I generate-core-file

I You can open a core�le using GDB:
I # gdb program -c corefile.PID



Core�les

I Core�les are frozen images of the inferior. You can inspect
everything that was happening when the process was running
(but you can't resurrect it).

I You can generate them outside GDB, when a program crashes.
Make sure you:
I ulimit -c unlimited
I Check if systemd is handling them

(/proc/sys/kernel/core_pattern).

I You can also generate them inside GDB, at any moment:
I generate-core-file

I You can open a core�le using GDB:
I # gdb program -c corefile.PID



Core�les

I Core�les are frozen images of the inferior. You can inspect
everything that was happening when the process was running
(but you can't resurrect it).

I You can generate them outside GDB, when a program crashes.
Make sure you:
I ulimit -c unlimited
I Check if systemd is handling them

(/proc/sys/kernel/core_pattern).

I You can also generate them inside GDB, at any moment:
I generate-core-file

I You can open a core�le using GDB:
I # gdb program -c corefile.PID



Other interesting information

I info breakpoints

I info locals

I info registers

I Many others!



Who you gonna call?

I Our online documentation (info) is very good!

I Every command has a help.

I You can also use apropos when searching for a term.

I TAB-completion is also useful.



Other advanced features

I Python support.

I Reverse debugging.

I Support for SystemTap SDT probes.



Thank you

I Thanks to Red Hat for the support.

I Thanks to Paul Nijjar and Bob Jonkman for the invitation.

I Thanks to you for watching!


